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ABSTRACT
Sensor measurement uncertainty has never been fully considered in prior appraisals
of global average surface air temperature. The estimated average ±0.2 C station error
has been incorrectly assessed as random, and the systematic error from uncontrolled
variables has been invariably neglected. The systematic errors in measurements from
three ideally sited and maintained temperature sensors are calculated herein.
Combined with the ±0.2 C average station error, a representative lower-limit
uncertainty of ±0.46 C was found for any global annual surface air temperature
anomaly. This ±0.46 C reveals that the global surface air temperature anomaly trend
from 1880 through 2000 is statistically indistinguishable from 0 C, and represents a
lower limit of calibration uncertainty for climate models and for any prospective
physically justifiable proxy reconstruction of paleo-temperature. The rate and
magnitude of 20th century warming are thus unknowable, and suggestions of an
unprecedented trend in 20th century global air temperature are unsustainable.

1. INTRODUCTION
The rate and magnitude of climate warming over the last century are of intense and
continuing international concern and research [1, 2]. Published assessments of the
sources of uncertainty in the global surface air temperature record have focused on
station moves, spatial inhomogeneity of surface stations, instrumental changes, and
land-use changes including urban growth. 

However, reviews of surface station data quality and time series adjustments, used
to support an estimated uncertainty of about ±0.2 C in a centennial global average
surface air temperature anomaly of about +0.7 C, have not properly addressed
measurement noise and have never addressed the uncontrolled environmental
variables that impact sensor field resolution [3-11]. Field resolution refers to the ability
of a sensor to discriminate among similar temperatures, given environmental exposure
and the various sources of instrumental error. 

In their recent estimate of global average surface air temperature and its uncertainties,
Brohan, et al. [11], hereinafter B06, evaluated measurement noise as discountable,
writing, "The random error in a single thermometer reading is about 0.2 C (1σ) [Folland,



et al., 2001] ([12]); the monthly average will be based on at least two readings a day
throughout the month, giving 60 or more values contributing to the mean. So the error
in the monthly average will be at most = 0.03 C and this will be
uncorrelated with the value for any other station or the value for any other month."
Paragraph [29] of B06 rationalizes this statistical approach by describing monthly
surface station temperature records as consisting of a constant mean plus weather
noise, thus, "The station temperature in each month during the normal period can be
considered as the sum of two components: a constant station normal value (C) and a
random weather value (w, with standard deviation σi)." This description plus the use
of a reduction in measurement noise together indicate a signal averaging
statistical approach to monthly temperature. 

1.1. The scope of the study
This study evaluates a lower limit to the uncertainty that is introduced into the
temperature record by the estimated noise error and the systematic error impacting the
field resolution of surface station sensors.

Basic signal averaging is introduced and then used to elucidate the meaning of the
estimated ±0.2 C average uncertainty in surface station temperature measurements as
described by Folland, et al. [12]. An estimate of the noise uncertainty in any given
annual temperature anomaly is then developed. Following this, the lower limits of
systematic error in three temperature sensors are calculated using previously reported
ideal field studies [13].

Finally, the average measurement noise uncertainty and the lower limit of
systematic error in a Maximum–Minimum Temperature System (MMTS) sensor are
combined into a total lower limit of uncertainty for an annual anomaly, referenced to
a 30-year mean. The effect of this lower-limit uncertainty on the global average
surface air temperature anomaly time series is described. The study ends with a
summary and a brief discussion of the utility of the instrumental surface air
temperature record as a validation target in climate studies.

2. SIGNAL AVERAGING
The error in an observable due to random noise can be made negligible by averaging
repetitive measurements [14, 15]; a technique that is exploited to excellent effect in
spectroscopy [16]. Three cases below show when noise reduction by signal averaging
is appropriate, and when it is not. The statistical model in B06 is then appraised in light
of these cases. 

2.1. Case 1
In signal-averaging repetitive measurements of a constant temperature, the
measurement in a random noise model is, 

, (1)

where ti is the measured temperature, τc is the constant "true" temperature, and ni is the

t ni c i= +τ

1 60/

0 2 60. /

970 Energy & Environment ·  Vol. 21, No. 8, 2010



random noise associated with the ith measurement. When the noise is stationary, it has

a constant average intensity and a mean of 0. The mean temperature is , 

and the ‘mean temperature ± mean noise’ is, 

. (2)

When N is large and the noise is stationary, and 

, where σ 2
n is the variance of the noise intensity, and "⇒" signifies

‘approaches equality with.’ Finally,

. (3)

That is, given a constant temperature and stationary random noise, averaging repetitive

measurements of any constant temperature reduces the impact of noise as , and

at large N, and [15, 17, p. 53ff]. Noise reduction by signal

averaging is thus entirely appropriate when data fall within Case 1.

2.2. Case 2
Now suppose the conditions of Case 1 are changed so that the N true temperature
magnitudes, τi, vary inherently but the noise variance remains stationary and of constant
average intensity. Thus, , while .
Then, 

, (4)

where ti is again the measured temperature, τi is the "true" instantaneous temperature,
and ni is again the noise intensity associated with the ith measurement. This case may
reflect a series of daily temperatures from any well-sited and maintained surface
station sensor.  In this case the ‘mean temperature ± mean noise’ will again be, 
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However, a further source of uncertainty now emerges from the condition .

The mean temperature, , will have an additional uncertainty, ±s, reflecting the fact

that the τi magnitudes are inherently different. The result is a scatter of the inherently

different temperature magnitudes about the mean, because now ,

where represents the difference between the "true" magnitude of τi and , apart

from noise. The magnitudes of the ni and the τi, are physically independent and

uncorrelated, and ni and are statistically independent. Therefore the uncertainties

due to these factors can be calculated separately:

, but [17,p. 9ff] (6)

The condition of noise stationarity means that the ni have a true constant mean of zero

(i.e., µnoise = 0). However, the second part of eqn. (6) shows that use of the empirical mean

temperature, , in calculating , removes a degree of freedom from s2.

Following from eqns. (5) and (6), although the impact of random noise on diminishes

with , the magnitude uncertainty in , given by, [17, p. 9ff],

does not.

For Case 2 measurements the noise variance, , and the magnitude uncertainty,

±s, must enter into the total uncertainty in the mean temperature as .
Therefore under Case 2, the uncertainty never approaches zero no matter how large

N becomes, because although ±σn should automatically average away, ±s is never
zero.

The usual way to represent the uncertainty in averages of inherently varying
magnitudes is with the standard deviation (SD) of the total scatter about the mean [17, 

p. 11], e.g., . If the sensor ±σn has been measured 

independently, then ±s can be extracted as because
measurement noise and magnitude scatter are statistically independent. The magnitude
uncertainty, ±s, is a measure of how well a mean represents the state of the system. A
large ±s relative to a mean implies that the system is composed of strongly
heterogeneous sub-states poorly represented by the mean state [18]. This caution has
bearing on the physical significance of mean temperature anomalies (see below).

2.3. Case 3
Finally, suppose a series of N temperature measurements of inherently unique
magnitudes but now also with unique and unequal noise variances. Thus as in Case 2,
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, but now both and .
This condition could arise from a time-dependent shift in the magnitude of the
measurement noise of a single sensor, or when averaging temperatures from multiple
sensors that each exhibits an independent and unique noise variance. The latter
situation is closest to a real-world spatial average, in which temperature measurements
from numerous stations are combined.

2.3.1. Case 3a
If the unequal noise variances from each and all of the station sensors are known to be

stationary and uncorrelated, then and the variance of the mean is 

[17, p. 57]. One can simplify analysis by scaling all the variances 

to a single variance, thus , where 

are the coefficients of scale. Each of the N unequal variances entering a
mean can now be transformed into an average variance of uniform magnitude as,

(7)

where , and is a constant stationary
variance. On combining N measurements, the variance of the mean becomes, 

(8)

The average noise uncertainty in is then , and if

σ 2
i was the minimum of variances, then . Thus, with stationary noise variances

of known but uneven magnitude, an average noise uncertainty can be found,

, that again diminishes as . It is important to notice that 

of Case 2, a variance of noise, is calculationally and conceptually distinct from of

Case 3, an average of variances.

2.3.2. Case 3b
When sensor noise variances have not been measured and neither their stationarity nor
their magnitudes are known, an adjudged average noise variance must be assigned
using physical reasoning [19]. For multiple sensors of unknown noise provenance, or
for a time series from a single sensor of unknown and possibly irregular variance, an
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adjudged estimate of measurement noise variance is implicitly a simple average, 

, where each is of unknown provenance and nominally represents 

the   unique noise variance of one of the N measurements. The primed sigma indicates
an adjudged estimate and distinguishes Case 3b noise uncertainty from those of Cases
1-3a.

In the case of an adjudged average noise uncertainty, each temperature
measurement must be appended with the constant uncertainty estimate as, . 

The mean of a series of N measurements is the usual , but the average 

noise uncertainty in the measurement mean is [17, p. 58,
wi = 1], with one degree of freedom lost because the estimated noise variance in each
measurement is an implied mean.

Thus when calculating a measurement mean of temperatures appended with an
adjudged constant average uncertainty, the uncertainty does not diminish as .
Under Case 3b, the lack of knowledge concerning the stationarity and true magnitudes
of the measurement noise variances is properly reflected in a greater uncertainty in the
measurement mean. The estimated average uncertainty in the measurement mean,

, is not the mean of a normal distribution of variances, because under Case 3b the
magnitude distribution of sensor variances is not known to be normal. 

The condition in Case 3 also produces a magnitude uncertainty, ±s, in
analogy with Case 2. When the magnitudes and stationarities of measurement noise
variances are both unknown, the total uncertainty in a measurement mean is

. In Case 3b, does not diminish as , and ±s–

cannot be separated from . 

3. RESULTS AND DISCUSSION
3.1. The average noise uncertainty estimate
It is now possible to evaluate the ±0.2 C uncertainty estimate of Folland, et al. [12],
who "estimated the two standard error (2σ) measurement error to be 0.4 °C in any
single daily [land air-surface temperature] observation." This estimate was not based
on a survey of sensors nor followed by a supporting citation. The temperature sensor
at each station will exhibit a unique and independent noise variance, and the context
in Ref. [12] provides that the ±0.2 C is from the estimated average variance of the
ensemble of variances of the individual surface station sensors entering measurements
into a global average surface air temperature. This estimated uncertainty thus falls
under Case 3, above.

Following this identification, the question next becomes whether the relevant
station sensor noise variances are stationary and of known magnitude. In general,
detailed examinations of errors in station histories have focused principally on
inhomogeneities due to instrumental changes and station moves [3, 9, 20-24], but have
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not mentioned appraisals of station sensor variance. Reviews of time series quality
control and homogeneity adjustments do not discuss sensor evaluation [7-10], and the
methodological report of USHCN data quality [25] does not describe validation or
sampling of noise stationarity in temperature sensors. The surface station sensor
diagnostics, available in the online reports of the new USCRN National Climatic Data
Center network, include standard deviations calculated from the twelve temperatures
recorded hourly (http://www.ncdc.noaa.gov/crn/report; see the "Air Temperature
Sensor Summary," under "Instruments"). But despite the set of ~8640 monthly
standard deviations from individual CRN sensor data streams, which should give some
measure of the magnitude and stationarity of variance, no extensive survey of station
sensor variance is evident in published work.

The quality of individual surface stations is perhaps best surveyed in the US by way
of the commendably excellent independent evaluations carried out by Anthony Watts
and his corps of volunteers, publicly archived at http://www.surfacestations.org/ and
approaching in extent the entire USHCN surface station network. As of this writing,
69% of the USHCN stations were reported to merit a site rating of poor, and a further
20% only fair [26]. These and more limited published surveys of station deficits [24,
27-30] have indicated far from ideal conditions governing surface station
measurements in the US. In Europe, a recent wide-area analysis of station series
quality under the European Climate Assessment [31], did not cite any survey of
individual sensor variance stationarity, and observed that, "it cannot yet be guaranteed
that every temperature and precipitation series in the December 2001 version will be
sufficiently homogeneous in terms of daily mean and variance for every application."
Likewise, sensor variance was not mentioned in recent studies of data quality from
surface stations in Canada [32, 33], where it was noted in 2002 that, "adjustments have
only been carried out for identified step changes and the homogenized monthly
temperatures have not been adjusted for artificial trends at this time." The authors
stated further that, "The preferred methodology would be to develop procedures based
on each cause of inhomogeneity. However, this would be a very site-specific task that
would be nearly impossible to implement on a Canada-wide basis." Station
evaluations for sensor variance are also not mentioned in the climate normals report of
Environment Canada [34]. 

Thus, there apparently has never been a survey of temperature sensor noise
variance or stationarity for the stations entering measurements into a global
instrumental average, and stations that have been independently surveyed have
exhibited predominantly poor site quality. Finally, Lin and Hubbard have shown [35]
that variable field conditions impose non-linear systematic effects on the response of
sensor electronics, suggestive of likely non-stationary noise variances within the
temperature time series of individual surface stations (see Section 3.2.2).

These considerations indicate that an assumption of stationary noise variance in
temperature time series cannot be presently justified, and that the assumption of
random station errors is not empirically tenable. Therefore, the ±0.2 C estimate in Ref.
[12] is the assessed of Case 3b above, namely an adjudged assignment taken
to represent the average uncertainty from an ensemble of surface station measurement

± ′σ noise
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noise variances of unknown magnitude and stationarity. It does not represent the
magnitude of random noise for any specific measurement, nor does it represent the
noise variance of any specific sensor, nor is it an average of known stationary
variances. Following Case 3b, the ±0.2 C estimate of Ref. [12] is ; an adjudged
constant average uncertainty that attaches to each surface temperature measurement
and that must therefore be carried into a spatial average of N station measurements as

. This uncertainty does not decrement as 
when calculating a mean, and will constitute a significant part of the total uncertainty
in any global average surface air temperature index. Therefore the noise
reduction model in B06 is in error.

Clearly, a different statistical approach to uncertainty in air temperature averages is
warranted; one that reflects the true empirical uncertainties. This approach is shown next. 

3.2. An empirical approach to temperature uncertainty
Tmax and Tmin are typically measured many hours apart under physically opposing
irradiance conditions. Although they may have an identical instrumental noise
structure, they are experimentally independent measurements of physically different
observables, each measured separately.

3.2.1. Uncertainty due to estimated noise
Following from Case 3b and the discussion in Section 3.1 above, the estimated per-
measurement uncertainty = ±0.2 C from Ref. [12] must enter as a constant
applied to each temperature measurement. This value also represents the achievable
uncertainty recommended by the World Meteorological Organization [36]. Using this
value, and including normalization to a 30-year mean, the noise uncertainty in an
annual anomaly is now stepwise calculated.

In order to maximally reduce the uncertainty, the annual temperature and the 30-year
mean temperature were calculated directly, as though from individual

measurements, as , where is annual mean temperature, is a 30-year

mean reference, ti is an individual measurement, and N is the number of measurements
(twice the number of days entering each mean). Applying the estimated average per-
measurement uncertainty, , the total noise uncertainty in any
measurement average is 

(9)

where N is the number of measurements entering the mean. This calculation yields
= ±0.200 for both an annual mean temperature and a 30-year mean, and this

uncertainty enters separately into each mean. 
In calculating the uncertainty in an annual anomaly referenced against a multi-
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quadrature [17, p. 48]. The average noise uncertainty in the annual anomaly is then, 

= ±0.283 C, where , are
the average noise uncertainties in the annual mean temperature, or the 30-year mean
temperature, respectively. The represents the minimal noise-derived uncertainty
in an annual temperature anomaly, referenced to a 30-year mean, for any given surface
station when using the per-measurement estimated = ±0.20 C of Folland, et al. [12]. 

It is also possible to obtain an annual anomaly by normalizing an annual
temperature series to a fitted mean obtained by regression against a 30-year annual
temperature time series. However, a regression mean introduces the uncertainty of the
fit into the total uncertainty. This new uncertainty is the numerical estimated standard
deviation (e.s.d.) of the fit, further scaled to reflect the reduced degrees of freedom
induced by autocorrelation of the residuals [37]. The average uncertainty of each
annual anomaly magnitude is then, 

, (10)

where (e.s.d.)i is the numerical estimated standard deviation per point, N is the number
of points, and ν is the number of degrees of freedom lost through autocorrelation of
the residuals.

Finally, in every case, a magnitude uncertainty, ±s, must also be included as part of

the uncertainty in an annual anomaly. The magnitude uncertainty in an annual

anomaly, ±sa, can be estimated as , where ±s is the magnitude

uncertainty in a yearly average temperature, is the average annual temperature

anomaly, referenced to a 30-year mean, and is the average temperature for that

same year. This uncertainty transmits the confidence that may be placed in an anomaly

as representative of the state of the system.

3.2.2. Uncertainty due to systematic impacts on instrumental field resolution
The degraded instrumental resolution due to the systematic error from uncontrolled
variables [38, 39] has apparently never found its way into any published assessment
of the uncertainties in the global average surface air temperature index. The systematic
measurement errors originating from the field exposure of the Min-Max Temperature
System (MMTS), Automated Surface Observing System (ASOS), the Gill shield, and
other commonly used electronic temperature sensors and shields have been
investigated in excellent detail by Lin and Hubbard [35] and found to originate
principally from solar radiation loading and wind speed effects. Other sources of error
were enumerated as, "originating with the sensing element, analog signal
conditioning, and data acquisition system [and] include the sensor interchangeability
error, polynomial and linearization errors, self-heating error, voltage or current
reference (excitation) error, total offset and drift in the amplifiers and ADC (associated

T
_

∆Ta

± = ± ×s s T Ta a( )∆

± ′ = ′ + × −ˆ ( ) [ ( . . .) ( )]σ σ ν
�

n
T

iN e s d N2 2

′σ n

± ′σ̂ n

± ′
�
σ n

T̂± ′
�
σ n

T± ′ = ′ + ′ = +ˆ ( ) ( ) ( .  ) ( .  )
ˆσ σ σn n

T
n

T C C
� �2 2 2 20 2 0 2

Uncertainty in the global average surface air temperature index: 977
a representative lower limit



with stability), and lead wire error." All these systematic errors, including the
microclimatic effects, vary erratically in time and space [40-45], and can impose non-
stationary and unpredictable biases and errors in sensor temperature measurements
and data sets. These uncontrolled experimental variables degrade instrumental field
resolution, and must be included in assessments of uncertainty in spatially and
chronologically averaged temperatures. 

Under ideal site conditions Hubbard and Lin recorded thousands of air

temperatures using MMTS, ASOS, Gill, and other sensors and shields [13, 35, 42],

and compared them to temperatures simultaneously measured using a calibrated high-

resolution R. M. Young temperature probe with an aspirated shield. For each recorded

temperature, the measurement rate was 6 min.-1 integrated across 5 min., reducing the

random noise in each aggregated temperature measurement by . The

temperature data thus consisted primarily of a bias and a resolution width relative to

the "true" temperature provided by the R. M. Young probe. Figure 1 shows the ideal

day time field resolution envelopes of the MMTS, ASOS temperature sensors and Gill

shield [13], fitted with the Gaussian ,

where a is a vertical offset, b is an intensity scaler, σ is the Gaussian (intensity)/e1/2

half-width (the standard deviation), and µ is the Gaussian mean. The results of the fits

are shown in Table 1. 
Analogous fits to the 24-hour average data yielded, (sensor, µ (C), 1σ (±C), r2):

MMTS, (0.29, 0.25, 0.995); ASOS, (0.18, 0.14, 0.993), and; Gill, (0.21, 0.19, 0.979).
These values are somewhat different from those originally reported in Ref. [13], which
were not obtained from Gaussian fits. 

The sensor evaluations were carried out under conditions of ideal siting and
excellent maintenance [13]. Therefore, the field resolutions listed above approximate
best achievable values and represent an attainable lower limit of instrumental
resolution under field use conditions. Instrumental resolution by itself constitutes the
minimum uncertainty in any temperature measurement, and the response of ideally
sited and maintained sensors provides an empirical lower limit of field resolution.

Table 1: Lower Limit Temperature Sensor Resolutions from Gaussian fits

a b x+ × − −( ) exp{ [( )( ) ]}1 2 1 2 2σ π µ σ

1 30/
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Figure 1. Daytime (a) and nighttime (b) resolution of: (o), MMTS; (�), ASOS, and;
(∆) Gill temperature sensors. The points were derived from Figure 2a,b of Ref. [13],
using the program Digitizeit (www.digitizeit.de). The curves were normalized to unit

area and each temperature bias relative to the R. M. Young probe was removed to
yield a common mean of 0 C. The lines are Gaussian fits to the points. The ASOS

and Gill data were vertically shifted 1 and 2 units, respectively, for clarity.

Temperature sensor resolution can, however, be significantly improved by application
of a real-time empirical filtering algorithm to minimize the systematic error due to
uncontrolled micro-climate variables [13, 46], as shown in Figure 2. 
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From the fits in Figure 2, the improved resolution of filtered MMTS data yields an

uncertainty of ±0.093 C in daily mean temperature (cf. Figure 2, Legend). Using the

equations gathered in Table 2, a minimum adjudged average ±0.1 C noise uncertainty

and the ±0.093 C filtered resolution from a well-maintained MMTS sensor in an ideal

site location, alone, yield a r.m.s. uncertainty in a per-station yearly temperature

anomaly of = ±0.193 C. However, the field resolution of

surface station temperature sensors is not yet commonly improved using the Hubbard-

Lin filter.

Figure 2. Gaussian fits to algorithmically filtered MMTS temperature resolution
data, digitized as in Figure 4 and extracted from Ref. [46]. a. Daytime and b.

nighttime, normalized to unit area and with the temperature bias again removed to
produce a common mean of 0 C.  The fit parameters are: a. σ = ±0.093±0.002 C,

r2 = 0.993, and; b. σ = ±0.029±0.001 C, r2 = 0.987.

( . ) ( . )0 141 0 1322 2+
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3.2.3. The lower limit uncertainty in an annual temperature anomaly
Appropriate statistics are now used to combine the average noise uncertainty of
Section 3.2.1 and the ideal lower limit of systematic error from Section 3.2.2, into a
composite lower limit of measurement uncertainty in surface station air temperature
anomalies. 

The equations used to propagate an appended per-measurement uncertainty into an
annual anomaly, due to the entry of systematic error into field resolution, are
analogous to those used to propagate the constant average noise uncertainty. One
degree of freedom is lost in the statistical uncertainty mean because every
determination of systematic error in a temperature data set is an average of the effects
of uncontrolled variables. Each determination of field resolution uncertainty is also
unique in terms of bias and width, because uncontrolled variables fluctuate in time and
space. The idealized field resolutions for MMTS, ASOS sensors and the Gill shield
referenced to a 30-year mean are shown in Table 2. For an MMTS sensor under ideal
site conditions these equations yielded ±σ–r = ±0.36 C, which represents a lower limit
of resolution uncertainty from each such station entering into a global average
anomaly. Table 2 also includes the analogous Case 3b average noise uncertainties from
Section 3.2.1.

Table 2: Uncertainty in an Annual Anomaly Due to Noise or Resolutiona

a. Rows are, top: uncertainty in a yearly mean temperature; bottom: uncertainty in yearly anomaly
referenced to a 30 year mean. b. Uncertainty Equation. c. 1σ (±C; day, night): MMTS=(0.23, 0.17);
ASOS=(0.16, 0.11), and Gill=(0.22, 0.12); see Table 1.

Figure 1 and Table 2 reflect average noise, and the resolution uncertainties currently
expected from the ideal placement and maintenance of conventional surface station
temperature sensors. For any one surface-station deploying a modern MMTS sensor,
the minimal measurement uncertainty will be the average noise plus the ideal
resolution uncertainties combined in quadrature [39, Section 5, 47]. From Table 2, for
an MMTS sensor the total noise plus resolution lower-limit 1σ measurement
uncertainty in an annual temperature anomaly referenced to a 30-year mean is

= ±0.46 C.
The meaning of an ideal lower limit of measurement uncertainty provides that it is

of lower magnitude than the uncertainty in each and all of the other homologous
single-station measurements, worldwide. Thus, liquid-in-glass (LIG) thermometers in

± = +ˆ ( . ) ( . )σ 0 283 0 3592 2
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Cotton Regional Shelters are reckoned to be of lower field resolution than the MMTS
sensor [3, 41, 48]. Further, precision comparisons have shown that the systematic error
introduced into surface station temperatures by the Cotton Regional Shelter is about
twice that of the MMTS aspirated shield [42]. Thus, the ±0.46 C lower limit
uncertainty of a modern MMTS sensor underestimates the uncertainty in the
measurements from LIG thermometers in CRS shields that constitute the bulk of the
20th century global surface air temperature record. 

The ±0.46 C lower limit of MMTS uncertainty is therefore applicable to every
measurement in the global land surface record, because of the very high likelihood that
it is of lower magnitude than the unknown uncertainties produced by surface station
sensors that are generally more poorly maintained, more poorly sited, and less accurate
than the reference sensors. The ideal resolutions of Figure 1 and Table 2 thus provide
realistic lower-limits for the air temperature uncertainty in each annual anomaly of
each of the surface climate stations used in a global air temperature average. This
lower limit of measurement uncertainty for each surface station annual temperature
anomaly is propagated into a global average as,

, (11)

to produce the total lower limit of uncertainty in a global temperature anomaly. Here

σ
∧ 2

i is the lower limit mean noise plus resolution annual temperature uncertainty at the

ith station, and N is the number of stations. For example, the lower limit of sensor

uncertainty propagates into a global surface average air temperature anomaly as

, when, e.g., N = 4349 as in Ref. [11].

This uncertainty enters each anomaly in a global annual time series, and will be in

addition to the commonly discussed uncertainties resulting from weather noise, step

discontinuities, incomplete station coverage, land-use changes, siting artifacts [26],

and albedo changes [49]. It seems likely that the new USCRN stations [50] will not

significantly improve on the lower limit uncertainty any time soon [51].

3.2.4. The representative lower limit uncertainty in a global average air temperature
anomaly time series
In independent calculations of global average surface air temperature anomalies,
[52-54], the major source of uncertainty was assigned to incomplete station
coverage, 2σ = ±0.07 C [55], with most of the remaining uncertainty assigned to
the temporal inhomogeneity of temperature records [5]. These estimates of the global
surface air temperature index did not include the instrumental uncertainties present in
the surface station temperature measurements themselves, however. Therefore, the
effect of the ideal lower limit uncertainty illustrated above on the reliability of the
global average surface air temperature index is briefly considered below.

± = ± × − = ±σ global N C N C( .  ) ( ) .  0 46 1 0 462

± =
−

=
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σ
σ
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The uncertainties due to average noise and instrumental resolution in maritime
temperature sensors remain to be evaluated and propagated into marine air
temperature anomalies [11]. However, assessments of instrumental uncertainties in
marine air and sea-surface temperatures have revealed evidence of significantly large
systematic errors [56, 57], which both bias marine temperature measurements and
imply an instrumental resolution degraded by uncontrolled environmental variables
throughout the 20th century. Uncertainties in marine temperatures are thus not likely
to be less than appraised here for land surface stations [4, 58, 59]. Therefore, the lower
limit uncertainty in an MMTS land surface anomaly, σ = ±0.46 C , can be credibly
applied to the global land + ocean anomalies.

Figure 3 shows the global average surface air temperature anomaly index as
compiled from surface and maritime meteorological stations and provided by the
Goddard Institute for Space Studies, as updated on 18 February 2010. The lower limit
±0.46 C uncertainty in an annual surface anomaly is plotted on Figure 3 to illustrate a
credible lower limit of uncertainty in the current surface air temperature anomaly
series. 

Figure 3. (•), the global surface air temperature anomaly series through 2009, as
updated on 18 February 2010, (http://data.giss.nasa.gov/gistemp/graphs/). The grey

error bars show the annual anomaly lower-limit uncertainty of ±0.46 C.
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Figure 3 shows that the trend in averaged global surface air temperature from 1880
through 2000 is statistically indistinguishable from zero (0) Celsius at the 1σ level
when this lower limit uncertainty is included, and likewise indistinguishable at the 2σ
level through 2009. Thus, although Earth climate has unambiguously warmed during
the 20th century, as evidenced by, e.g., the poleward migration of the northern tree line
[60-62], the rate and magnitude of the average centennial warming are not knowable.

4. SUMMARY AND CONCLUSIONS
The assumption of global air temperature sensor noise stationarity is empirically

untested and unverified. Estimated noise uncertainty propagates as ,

rather than as . Future noise uncertainty in monthly means would greatly
diminish if the siting of surface stations is improved and the sensor noise variances
become known, monitored, and empirically verified as stationary.

The persistent uncertainty due to the effect of uncontrolled microclimatic variables
on temperature sensor resolution has, until now, never been included in published
assessments of global average surface air temperature. Average measurement noise
and the lower limit of systematic sensor errors combined to yield a representative
lower limit uncertainty of ±0.46 C in a 30-year mean annual temperature anomaly. In
view of the problematic siting record of USHCN sensors, a globally complete
assessment of current air temperature sensor field resolution seems likely to reveal a
measurement uncertainty exceeding ±0.46 C by at least a factor of 2.

The ±0.46 C lower limit of uncertainty shows that between 1880 and 2000, the
trend in averaged global surface air temperature anomalies is statistically
indistinguishable from 0 C at the 1σ level. One cannot, therefore, avoid the conclusion
that it is presently impossible to quantify the warming trend in global climate since
1880. 

Finally, the relatively large uncertainty attending the global surface instrumental
record means that the centennial temperature trend is not a precision target for
validation tests of climate models. Likewise, the current surface instrumental record
cannot credibly be used to train or renormalize any physically valid proxy
reconstruction of paleo-temperature with sufficient precision to resolve any
temperature difference less than at least 1 C, to 95% confidence. It is thus impossible
to know whether the rate of warming during the 20th century was climatologically
unprecedented, or to know the differential magnitude of any air temperature warmer
or cooler than the present, within ±1 C, for any year prior to the satellite era. Therefore
previous suggestions, that the rate or magnitude of present climate warming is recently
or millennially unprecedented, must be vacated.
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